
Adaptive Risk Preferences: Unraveling the Impact of

Monetary Policy on Output

Antje Berndt and Jean Helwege*

December 2023

Abstract

We introduce a novel approach for measuring time variation in habit-based preferences

using corporate bond data, and employ this approach to estimate moments that describe the

link between surplus consumption and output. Using a model that integrates macroeconomic

dynamics with habit-based preferences, we show that our evidence on the relationship between

surplus consumption and the output gap is most consistent with a model specification where a
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A large literature explores the impact of monetary policy on output and the contribution of

monetary policy shocks to output fluctuations. Ramey (2016) reviews the leading approaches

to identifying the relationship between the Fed Funds rate and output, and highlights the wide

variation in the estimated responses of output to monetary policy shocks. Table 1 of her paper

shows that output might drop by as much as 5% in response to a 100 basis point monetary policy

shock, or as little as 0.06%. Likewise, the trough could be as short as eight months but could also

be as long as two years.

These approaches often focus on modeling macroeconomic dynamics alone, with little to no

emphasis on the role of time variation in risk premia. In contrast, Bauer, Bernanke, and Milstein

(2023) stress that monetary policy may affect output through investors’ risk preferences, such as

through the risk-taking channel of Borio and Zhu (2012). Campbell, Pflueger, and Viceira (2020)

introduce a novel family of consumption-based asset pricing models that link time-varying risk

premia to macroeconomic dynamics through habit formation. In their model, output is assumed

to affect risk preferences such that an exact macroeconomic Euler equation links real rates to the

lagged, current and expected future output gap. An important benefit of this framework is that it has

the potential to induce a hump shape in the impulse response function of output, and could draw

out the trough by several quarters or more. Whether or not output affects risk preferences, and if it

does the extent to which is affects it, is an empirical question. The challenge of previous research

in addressing this question is that risk preferences are not directly observable. We overcome this

challenge with a new method for measuring preferences that allows us to quantify the impact of

output and lagged output on habit.

Our paper utilizes the Pflueger and Rinaldi (2022) framework, which adapts Campbell, Pflueger,

and Viceira (2020) to incorporate an inertial Taylor rule and measures monetary policy shocks as

deviations from the rule. Unlike Pflueger and Rinaldi (2022), however, who calibrate the model to

the relationship between the Fed Funds rate and output reported by Christiano, Eichenbaum, and

Evans (1999), we extract a measure of surplus consumption from the prices of corporate debt and

calibrate macroeconomic dynamics to the observed relationship between surplus consumption and
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the output gap. Our approach yields the impulse response function of output to monetary policy

shocks as a model output, rather than taking it to be a model input.

Our evidence on the relationship between surplus consumption and the output gap is most

consistent with a model specification where a monetary policy shock of 100 basis points reduces

output by 2.2% and has a trough at 9–10 quarters. These estimates fall within those of Chris-

tiano, Eichenbaum, and Evans (1999) who report a reduction in output by 0.7% at eight quarters

and Romer and Romer (2004) who report a reduction by 4.3% at eight quarters, except for the

slightly longer trough lag in our estimates.

The model matches the autocorrelation of the log surplus consumption ratio at a persistence

parameter close to prior work. It produces realistic variation in consumption by reducing the

standard deviation of monetary policy shocks relative to those reported by Pflueger and Rinaldi

(2022). The restriction often imposed for New Keynesian models that the forward- and backward-

looking terms in the Euler equation add up to one does not draw much empirical support. However,

when we allow the sum of the forward- and backward-looking terms to increase slightly above one,

the model provides a close approximation to the target correlation between surplus consumption

and the output gap, but still slightly underestimates the correlation between surplus consumption

and the twice-lagged output gap.

To extract a measure of time-varying risk premia from the prices of corporate debt, we take

advantage of the fact that the cash flow of a corporate bond takes on a particularly simple form.

This permits a parsimonious representation of credit spreads as a function of the default probability,

the sensitivity of the default event to macroeconomic news, and the market risk premium. We

estimate our measure using credit spreads for all public non-financial US firms over 1974–2021

and historical default event data dating back to 1927. Default probability estimates from Moody’s

Default and Recovery Database are used to create a default news index that updates in lockstep with

macroeconomic news. We use the index to estimate the sensitivity of default to macroeconomic

news, which we refer to as the “default loss beta,” and then link it to realized default rates in a

flexible manner. Our estimated default news index exhibits variation over the business cycle that
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is consistent with increases in the measured risk premia observed in recessions.

Our paper contributes to the literature that incorporates habit utility into a general equilibrium

model of the economy, including work by Pflueger and Rinaldi (2022), Fuhrer (2000), Cochrane

(2017), Campbell, Pflueger, and Viceira (2020), Smets and Wouters (2003), Smets and Wouters

(2007), Swanson (2021) and Bekaert, Engstrom, and Xu (2021), and builds on the seminal work

of Campbell and Cochrane (1999). Research that includes output in the habit equation (Campbell,

Pflueger, and Viceira, 2020; Pflueger and Rinaldi, 2022; Pflueger, 2023) calibrates macroeconomic

dynamics to one data point among a wide range of estimates on the relationship between the Fed

Funds rate and output (Ramey, 2016). In contrast, we calibrate macroeconomic dynamics to the

observed relationship between surplus consumption and the output gap, which allows us to quantify

the response of output to monetary policy shocks in a fully integrated setting for preferences and

macroeconomic fundamentals.

In addition to presenting an innovative approach to estimating the relationship between mone-

tary policy and output, we contribute to the literature on the monetary policy transmission mech-

anism by estimating the relationship between monetary policy shocks and risk aversion. Previous

research by Borio and Zhu (2012), Bauer, Bernanke, and Milstein (2023), Bekaert, Hoerova, and

Lo Duca (2013) and Bekaert, Engstrom, and Xu (2021) suggests that time variation in risk premia

is explained at least in part by changes in Federal Reserve policy. These results are consistent with

studies on the stock market reaction to FOMC announcements, such as Bernanke and Kuttner

(2005). Indeed, several studies find evidence that episodes of “low for long” policy lead to such

a decline in risk aversion that investors reach for yield (Rajan, 2006). Dell-Ariccia, Laeven, and

Marquez (2014) and Drechsler, Savov, and Schnabl (2018) model this behavior through the effects

of monetary policy on bank risk-taking.

The paper proceeds as follows. Section 1 presents the model and the solution method. Sec-

tion 2 describes the estimation of default loss betas. Section 3 discusses the estimation of risk

premia and the how the underlying data are sourced. Section 4 computes moments that describe

the comovement of risk premia and lagged output, calibrates macro dynamics to these moments,
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and then produces the model-implied impulse response of output to monetary policy actions. Sec-

tion 5 compares our estimated impulse response of output to monetary policy actions to existing

estimates, and then concludes.

1. Model

This section describes the macroeconomy, habit preferences and the stochastic discount factor

(SDF). For a generic time series vt , let Et(vt+1) and σv,t denote its conditional mean and standard

deviation, respectively.1 Lower-case letters indicate the log of the corresponding upper-case letters,

and ∆ denotes a one-period change, so that vt = log(Vt), ∆vt+1 = vt+1− vt , and so on. We use

εv,t+1 = vt+1−Et(vt+1) = ∆vt+1−Et(∆vt+1) to denote surprise changes in vt+1. Throughout,

stated equations of log dynamics hold up to an additive constant. Details on the derivations are

provided in Appendix A.

1A. Habit preferences

Suppose a representative agent derives utility Ut = U(Ct) from real consumption Ct relative to a

slowly-moving external habit level Ht , such that

U(Ct) =
(Ct−Ht)

1−γ −1
1− γ

, (1)

for some curvature parameter γ > 0. The surplus-consumption ratio, defined as St = (Ct−Ht)/Ct ,

measures the share of the market consumption that is available to generate utility.2 The real SDF,

denoted by Mt+1, has the form Mt+1/Mt =U ′(Ct+1)/U ′(Ct), up to a multiplicative constant, mean-

ing the log SDF is given as

∆mt+1 = −γ ∆ log(Ct+1−Ht+1) =−γ (∆ct+1 +∆st+1). (2)

1All of our probabilistic statements are for a given probability space (Ω,F ,P) and a filtration {Ft : t ≥ 0} of
sub-sigma algebras of F satisfying the usual conditions. For details, see Protter (2005).

2The relative risk aversion equals −CtU ′′(Ct)/U ′(Ct) = γ/St .
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Following Campbell and Cochrane (1999) and Campbell, Pflueger, and Viceira (2020), we

model habits indirectly by assuming that log surplus consumption, st , satisfies

st+1 = (1−θ0)s+θ0st +θ1xt +θ2xt−1 +λ (st)εc,t+1, (3)

for steady-state value s of log surplus consumption, scalars θ0, θ1, and θ2, and sensitivity function

λ (st) =


1
S

√
1−2(st− s)−1, st ≤ smax

0, st > smax,

(4)

where σc is the conditional standard deviation of surprise consumption growth εc,t+1, S=
√

γ/(1−θ0)σc,

and smax = s+ 1
2(1−S2

). The consumption surprise εc,t+1 is an equilibrium object depending on

fundamental shocks. We will show that in our solution, it is conditionally normally distributed and

homoskedastic.

Relative to Campbell and Cochrane (1999), Campbell, Pflueger, and Viceira (2020) introduce

the terms θ1xt + θ2xt−1, where xt (relative to a steady state) equals stochastically detrended log

real consumption,

xt = ct− (1−φ)
∞

∑
j=0

φ
jct−1− j, (5)

where φ is a smoothing parameter. Pflueger and Rinaldi (2022) emphasize that a non-zero value

for θ1 is necessary to generate a hump-shaped output response to a monetary shock and estimate

its value by calibrating the model such that it generates the hump. In contrast, we estimate θ1 from

the moments of our risk aversion measure and use it to examine the shape of the output response.

Pflueger and Rinaldi (2022) present microfoundations under which xt also equals the log output

gap, that is, the difference between between log output and log potential output under flexible
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prices. Equation (5) implies

Et(∆ct+1) = Et(xt+1)−φxt . (6)

1B. Euler equation

The real risk-free rate rt satisfies the asset pricing first-order condition

1 = Et

(
Mt+1

Mt
exp(rt)

)
= Et (exp(∆mt+1 + rt)) , (7)

which implies the Euler equation for real risk-free rates:

rt = − log(Et(exp(∆mt+1))) . (8)

Substituting (2), (3) and (4) into (8), and simplifying, gives

rt = γ Et(∆ct+1)+ γθ1xt + γθ2xt−1. (9)

Plugging (6) into (9), and rearranging terms, yields

xt = fxEt(xt+1)+ρxxt−1−ψrt , (10)

where ψ = 1
γ(φ−θ1)

, fx = γψ and ρx = θ2γψ . A given sum of the forward- and backward-looking

terms in (10), denoted by α = fx +ρx, implies the relationship

θ2 = α(φ −θ1)−1. (11)

Some New Keynesian models assume that the forward- and backward-looking terms add up to

one (α = 1).3 This restriction is also imposed by Pflueger and Rinaldi (2022). In contrast, the

3See, for example, Dennis (2009).
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macro dynamics in Campbell, Pflueger, and Viceira (2020) are consistent with α = 1.04. Because

we estimate θ1 and θ2 to match the moments of the risk aversion measure, we do not impose any

restriction on α . Nonetheless, our estimates show that it is fairly close to one.

1C. Phillips curve

The supply side of the model can be summarized by the log-linearized Phillips curve

πt = fπ Et(πt+1)+ρππt−1 +κxt , (12)

for constants fπ , ρπ and κ . Following the arguments in the appendix to Pflueger and Rinaldi

(2022), Equation (12) can be derived from microfoundations, where κ is a price-flexibility param-

eter and the aggregate resource constraint implies that output equals consumption. The restriction

common for New Keynesian models that the forward- and backward-looking terms add up to one

applies: fπ +ρπ = 1.

1D. Monetary policy rule

Let it denote the nominal risk-free rate between t and t + 1, and let i∗t = ψππt +ψxxt denote the

nominal policy rate. Monetary policy is described by the rule

it = ρiit−1 +(1−ρi)i∗t +νt , (13)

for some inertia parameter ρi ∈ (0,1).

To make the dynamics of inflation and interest rates tractable, we approximate the log one-

period nominal interest rate as the log real rate plus expected log inflation:

rt = it−Et(πt+1). (14)
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1E. Equilibrium solutions

The macroeconomic state vector is given as Zt = [xt ,πt , it ]′. Its elements are normalized to have

zero averages. The fundamental shock is εt . We are interested in a equilibrium solution of the form

Zt = BZt−1 +Σνt , (15)

where B and Σ are [3×3] and [3×1] matrices, respectively. There may exist alternative equilibrium

dynamics for Zt , with additional lags or sunspot shocks, but characterization of these additional

equilibria is beyond the scope of this paper. We follow the procedure in Pflueger and Rinaldi

(2022) to choose among equilibria of the form (15). Specifically, we narrow the set of equilibria

by requiring that all eigenvalues of B must be less than one in absolute value. In our applications,

there exist exactly three generalized eigenvalues with absolute value less than one, and we pick the

non-explosive solution corresponding to these three eigenvalues.

1F. Asset prices and risk premia

In frictionless markets, the real market value at time t of a claim to a real cash-flow process Yt is

VY,t =
∞

∑
j=1

Et(exp(
j

∑
s=1

mt+s)Yt+ j). (16)

It can be expressed as

VY,t = Et(exp(mt+1))Et(Yt+1 +VY,t+1)(1−premY+VY ,t), (17)

where Et(exp(mt+1))Et(Yt+1 +VY,t+1) is the value of Y that would apply if consumers were risk

neutral, and premY+VY ,t denotes the one-period risk premium on the claim to Y .4 In Appendix A,

4Note that premY+VY ,t = 1−R f ,t/Et(RY,t+1), where RY,t+1 = (Yt+1 +VY,t+1)/VY,t is the one-period gross return on
Y , and R f ,t is the one-period gross return on the risk-free asset. As long as the expected excess return on Y is near
zero, the approximate relationship premY+VY ,t = log(Et(RY,t+1))− r f ,t holds.
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we derive the approximate relationship

premY+VY ,t = βY,t premt , (18)

where

βY,t =
Covt

(
εc,t+1,

Yt+1+VY,t+1
Et(Yt+1+VY,t+1)

)
σ2

c
(19)

is the claim’s consumption news beta, and

premt = γ(1+λ (st))σ
2
c (20)

is the risk premium for the one-period consumption claim or, more generally, the risk premium on

a one-period beta-one claim.

Substituting (4) into (20) gives the approximate relationship

log(premt) = −st , (21)

which holds when st is close to its steady state s, and up to a constant. In the remainder of this

section and the next, we describe how we extract log(premt), and thus, st , from corporate bond

data. With this in hand, we are able to estimate parameters in the surplus consumption equation

(3), and ultimately to identify the relationship between interest rates and output.

1G. Corporate bonds

While the pricing concept (16)–(20) applies to all assets, it is particularly insightful when applied

to corporate debt where the cash-flow process Y takes on a simple form. Consider a firm i that is

solvent at time t and which owes one dollar of principal on a zero-coupon bond with a maturity

date of t +1. If it defaults, investors experience a loss of Li,t+1, which denotes the fractional loss
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of a dollar owed in time-(t +1) dollars. If the firm survives, Li,t+1 = 0. The real market value of

the bond is

Bit = Et(exp(mt+1))(1− csit), (22)

where csit denotes the one-period credit spread that is given as

csit = Et(Li,t+1)+Et(1−Li,t+1)prem1−L,it . (23)

The credit spread in excess of expected losses is measured by csit −Et(Li,t+1). We distinguish

between observed credit spreads, denoted by ĉsit , and the model-based spreads csit in (23), to

allow for observed excess spreads ĉsit −Et(Li,t+1) to include a proportional illiquidity mark-up

exp(`it), so that

ĉsit−Et(Li,t+1) = Et(1−Li,t+1)prem1−L,it exp(`it). (24)

When there are no illiquidity effects (`it = 0), bonds trade at efficient market levels (csit = ĉsit).

However, when there are carrying costs for holding default insurance (`it > 0), defaultable bonds

trade at below-efficient market levels (csit > ĉsit).

Equation (24) gives observed excess spreads, per unit of expected losses, as

ĉsit−Et(Li,t+1)

Et(Li,t+1)
= −βL,it premt exp(`it), (25)

where βL,it =−(Et(1−Li,t+1)/Et(Li,t+1))β1−L,it is the consumption news beta for the default loss

claim, or “default loss beta” for short. A negative βL,it reflects the common notion that default

insurance is more likely to pay in “bad” economic states than in “good” states.
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2. Default Loss Betas

Our ultimate goal is to identify premt in Equation (25), up to a multiplicative constant. This

requires estimates of default loss betas,

βL,it =
1

σ2
c

Covt

(
εc,t+1,

Li,t+1

Et(Li,t+1)

)
. (26)

Due to the infrequency of default events, especially for good and medium credit quality firms,

estimating βL,it for individual firms is unlikely to yield robust results. We therefore assume that the

default loss beta of an individual firm is described well by the average beta of a group of similar

firms. Specifically, we use j·t to index a time-t partition of firms into J non-overlapping cohorts,

and jit to denote the cohort that firm i belongs to at time t. We take L j,t+1 to be the realized

average fractional loss of bond notional in time-t + 1 dollars among firms that belong to cohort j

at t. Consistent with (19), we set βL,it = βL, jit t where

Et

(
L j,t+1

Et(L j,t+1)
−1
∣∣∣∣εc,t+1

)
= βL, jit tεc,t+1. (27)

To estimate β we require a measure of shocks that are related to default risk. Hilscher and

Wilson (2017) show that credit ratings are strongly related to systematic risk. Thus, we build an

index that represents variation in systematic default risk using credit ratings. In particular, for each

rating category (i.e., for each cohort jt), we calculate the unexpected default rate and build a default

news index as the weighted average of these cohort-specific shocks.

Define ζ j,t+1 as the realized average rate of default by time t + 1 among firms that belong to

rating cohort j at t, and Pjt =Et(ζ j,t+1) as the associated expected cohort-wide default rate. Impor-

tantly, in estimating cohort-level default rates we link default rates to market conditions, meaning

our default predictions update through the business cycle. For a constant expected recovery of no-

tional in the event of default or, more generally, as long as expected recovery rates are independent

of realized default rates, L j,t+1/Et(L j,t+1) = ζ j,t+1/Pj,t holds and (27) links unexpected defaults
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to consumption news via

Et

(
ζ j,t+1

Pjt
−1
∣∣∣∣εc,t+1

)
= βL, jtεc,t+1. (28)

Across cohorts, we observe countercyclical increases in unexpected defaults, indicating that

default news for a cohort reflects systematic risk that can be captured by a single index. Thus, we

assume there exists a weighted average of cohort-specific default shocks that covaries with default

risk in the economy:

zt+1 =
J

∑
j=1

ω j
(
ζ j,t+1−Pjt

)
, (29)

Therefore, this default news index also varies with consumption news. That is, for some positive

scalar b,

Et
(
zt+1

∣∣εc,t+1
)

= −bεc,t+1. (30)

Assuming that all of the systematic default risk of a cohort is a function of the default news

index, we can use the loadings on the index, K jt , to calculate βL, jt . Specifically, we assume

Et
(
ζ j,t+1−Pjt

∣∣εc,t+1,zt+1
)

= K jt zt+1, (31)

This allows us to compute β as:

βL, jt = −b
K jt

Pjt
. (32)

The vector of primitive model parameters is

(κ,ρ,{ω j},{K j}). (33)

12



2A. Default news

We now describe the process for measuring cohort-specific default news ζ j,t+1−Pjt in (30), which

relies on realized default data reported in Moody’s Default and Recovery Rate Database. We

express ζ j,t+1 and Pjt in annualized form and, for robustness purposes, measure them using their

annualized five-year counterparts. To do so, first, we filter the entire Moody’s database for US

non-financial corporates. For each letter5 rating and beginning of month, we compute the realized

cumulative default rate over the next five years, as shown in Figure 1.

To predict defaults, we assume that the default rate can be described as a function of the past

year’s stock returns. We obtain the value of the S&P 500 index from CRSP and calculate the

trailing one-year return for each month t. We merge the stock return data with the Moody’s default

rate data for a panel data set that covers January 31, 1927 onwards.

Figure 1: Realized default rates
The figure shows the monthly times series of annualized five-year realized default rate by letter rating cohort. The
underlying data are sourced from the Moody’s Default and Recovery Rate Database, filtered for US non-financial
corporates. For the high-yield cohorts, the displayed realized default rates are scaled by a factor of one-half. The
sample dates t run from January 1, 1973 to January 1, 2017, and the associated default rates are shown in the figure as
of time t +2.5. The shaded areas indicate NBER recessions.

Next, for each month from January 1973 onwards, we estimate a beta regression model of past

five-year default rates on stock index returns. These regressions are estimated using all available
5Alphanumeric ratings that refine major rating categories were introduced in 1983. So, for consistency over time,

we group firms by letter rating categories instead of alphanumeric rating categories.
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data as of the beginning of the month. Thus, for January 1, 1973, the default data for the regression

starts on January 31, 1927 and ends on December 31, 1967, whereas for February 1, 1973, the data

also start from January 31, 1927 but end on the last day of January 1968, and so on. Each end-of-

month t (or, equivalently, beginning-of-month t +1), we use the estimated beta regression and the

S&P500 return observed at end-of-month t to compute P5
jt as the predicted five-year cumulative

default rate for cohort j. Annualized five-year rates are given as P5a
jt = 1− (1−P5

jt)
1/5.

Figure 2 shows the monthly time series of estimated P5a
jt by letter rating j. For investment-

grade categories, we observe a slightly decreasing trend in cohort-level probabilities over time.

For high-yield cohorts, estimates trend higher, especially from the early 1990s to the GFC for the

lowest rating category.

Figure 2: Probabilities of default
The figure shows the monthly times series of annualized five-year default probabilities P5a

jt by letter rating cohort j.
The underlying data are sourced from the Moody’s Default and Recovery Rate Database and CRSP. The sample dates
t run from January 1, 1973 to January 1, 2017, and the associated default probabilities are shown in the figure as of
time t +2.5. The shaded areas indicate NBER recessions.

2B. Calibration

Using the predicted and actual default rates (ζ j,t+1 and Pjt), Figure 3 shows the cohort-specific

default news, ζ j,t+1 − Pjt . The graph shows considerable common cyclicality in default news

across cohorts.
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Figure 3: Default news
The figure shows the monthly time series of default news, ζ j,t+1−Pjt , for Moody’s letter rating cohorts. Annualized
realized default rates ζ j,t+1 are proxied as annualized five-year average default rates starting with month-end t, and
annualized default probabilities Pjt are proxied by annualized five-year average default rates. The sample dates t run
from January 1, 1973 to January 1, 2017, and the associated default news ζ j,t+1−Pjt are shown in the figure as of
time t +2.5. The first principal component (PC) is shown in black. All time series are demeaned and scaled by their
max-min range. The shaded areas indicate NBER recessions.

The default news index, introduced in Equation (29), is constructed as a weighted average of

cohort-specific default news. Using T to denote the length of our sample period, the non-negative

weights ω jt are subject to the constraint ∑ j,t ω jt/T = 1. This “adding-up constraint” is less strict

than requiring ∑ j,t ω jt = 1 to hold for all t. This is to allow for the possibility that a default news

index that satisfies (30) may exhibit greater time variation than, for example, the first principal

component of cohort-specific default news.6

As can be seen from Figure 3 default news tends to vary more for riskier firms. We therefore

consider the specification

ω jt = ω jP
ρ

jt and K jt =
K jPκ

jt

∑
J
j=1 ω jK jP

κ+ρ

jt

, (34)

for scalars κ and ρ , and cohort fixed effects ω j and K j.

6Principal components of cohort-specific default news are given as weighted averages across cohorts j of ζ j,t+1−
Pj,t , with weights that are time invariant. While (29) nests the case where zt is a principal component, it is more general
in that it also allows for time variation in cohort weights.
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We estimate (κ,ρ,{ω j},{K j}) from non-linear regressions, as follows. We set the weights ω j

used to construct the default news index in (29) to ωIG if j is an investment-grade category and to

ωHY if j is a high-yield category. For fixed values of κ , ρ and ωIG, we solve for ωHY using the

definition of ω j,t in (34) and the constraint ∑ j,t ω jt/T = 1.

Given κ , ρ and the set of ω j’s for all cohorts j, labeled {ω j}, the unknown coefficients K jt

in (32) are given as functions of {K j} (as per (34)). Jointly for all cohorts j, we search for the set

of values K j that minimizes the sum of squared errors in (31). This involves an iterative search

that starts with an initial choice {K(0)
j }. Without loss of generality, we choose {K(0)

j } such that

∑
J
j=1 K(0)

j = 1. Given {K(n)
j } in iteration n, for each cohort j we find the value K(n+1)

j so that

∑t e2
j,t+1 is minimized, where

e j,t+1 = (ζ j,t+1−Pjt)−K(n+1)
j

 Pκ
jt

∑
J
j=1 ω jK

(n)
j Pκ+ρ

jt

zt+1

 . (35)

We stop the iterations once {K(n+1)
j } remains (nearly) unchanged from {K(n)

j }.

Next, we iterate over different choices for κ , ρ and ωIG to find the closest cross-cohort fit

in (31). In our calibrations, we assess the cross-cohort closeness of fit by the average scaled root

mean squared error:

1
J

J

∑
j=1

√
∑t e2

j,t+1√
∑t(ζ j,t+1−Pjt)2

. (36)

In (36), we scale cohort-specific sums of squared errors by the corresponding sum of squared

default news. This is done to control for cross-cohort heterogeneity in the level of uncertainty

associated with default predictions.

The estimates of (κ,ρ,{ω j},{K j}) are shown in Table 1. Panel A reports the parameters

related to the default news index, and Panel B shows the parameters used to construct default betas

in (32). The table shows that the loadings on the default news index are larger for lower-credit-

quality cohorts. Given our assumptions and the positive value of κ in the table, this implies that
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Table 1: Default loss beta calibration results

Index parameters Default loss beta parameters
κ ρ ωIG ωHY KAa KA KBaa KBa KB sRMSE

0.359 −0.216 0.091 0.021 0.017 0.045 0.088 0.331 0.519 0.581

The table reports the fitted model parameters in (33). The calibration results are obtained by minimizing the average
scaled root mean squared error (sRMSE) in (36).

default loss betas βL, jt in (32) are more negative for riskier firms.

The default news index zt+1 constructed from the parameters in Panel A of Table 1 is shown

in Figure 4. The figure shows the default news index in black for each month from 1975 to 2017,

as well as the first principal component of unexpected defaults across rating cohorts. The graph

shows considerable cyclicality in the index, supporting our view that it represents the systematic

component of cohort-level default risk. The default news index and the principal component track

each other closely, meaning there is limited temporal variation in cohort weights.

Figure 4: Default news index
The figure shows the fitted time series of the default news index zt in (29), based on the data in Figure 3 and the
parameter estimates in Table 1. It also displays the first principal component (PC) of the cohort-specific default news.
The data are sourced from Moody’s annual reports. Data for cohorts formed at the beginning of year t are shown in
the figure as of time t +2.5. The shaded areas indicate NBER recessions.

Using the parameters in Panel B of Table 1, we compute default loss beta estimates according

to (32). These beta estimates are depicted in Figure 5, in the form of log(−βL, jt) to represent the
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first component of excess credit spreads per unit of expected losses in (25). For investment-grade

cohorts, we observe a moderate upward trend over time in the beta component of excess credit

spreads, especially for Aa-rated firms and A-rated firms. For high-yield cohorts, on the other hand,

the beta component is more volatile with a small downward trend.

Figure 5: Default loss betas
The figure shows the monthly time series of log(−βL, jt), from January 1, 1973 to December 1, 2021, based on the
data in Figure 3 and the parameter estimates in Table 1.

3. Measuring Time Variation in Risk Preferences

We take cohorts to be defined narrowly enough so that within-cohort firms have the same illiquidity

mark-ups, `it = ` jit . Equation (25) then implies that ĉsit = ĉs jit t , where ĉs jit t is the within-cohort

average credit spread. At the cohort level, (25) is equivalent to

log
(

ĉs jt−Et(L j,t+1)

Et(L j,t+1)

)
= log(−βL, jt)+ log(premt)+ ` j. (37)
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Having obtained estimates of default loss betas, we can now use them to estimate the risk premium

xt . Specifically, substituting (32) into (37) gives

log
(

ĉs jt−Et(L j,t+1)

K jt

)
= log(premt)+ ` j. (38)

which allows us to estimate log(premt) as time fixed effects in a regression of the left-hand side

in (38) on time and cohort fixed effects.

3A. Credit spread and expected loss data

The credit spreads sit are obtained using month-end prices of senior unsecured debt issued by pub-

lic non-financial U.S.-domiciled firms.7 Prices of individual corporate bonds are collected from

TRACE, the Lehman Brothers Fixed Income Database, and the Mergent FISD/NAIC Database (or-

dered by priority). In combination, these three sources span the period January 1973 to September

2021. We aggregate these data to the firm level by first calculating each bond’s credit spread as

the difference between the bond’s yield and that of the maturity-matched Treasury.8 The Treasury

yield curve is constructed using the methodology in Gurkaynak, Sack, and Wright (2007) and the

associated model parameter estimates provided by the Federal Reserve Board.9 In a second step,

the firm-level credit spread, sit , is calculated as a weighted average of the firm’s bond yield spreads

where the weights are face values.10 If the firm’s credit spread is negative in any given month,

we delete the observation from the sample. Likewise, we delete firm-month observations where

the spread is far below that of other firms in the same rating category. We focus on medium-term

credit spreads by restricting the computation of sit to include only bonds with a remaining time to

maturity between three and seven years.
7Public status is identified by matching bond issuers to CRSP/Compustat files. Bonds are matched with issuers

using 6-digit historical cusips, or via the issuer family structure reported by Mergent FISD.
8The TRACE data are cleaned using the algorithm developed by Dick-Nielsen (2014). The Lehman and TRACE

databases report yields, but the NAIC database only has prices. We compute NAIC yields using the information on
maturity, coupon and early redemption features reported in Mergent FISD, and then choose the minimum of the yield
to maturity and the yield to first call.

9Daily yield curve calibration results are available from https://www.federalreserve.gov/data/nominal-

yield-curve.htm.
10The weights are face values rather than amounts outstanding. The latter are not reported in the Lehman data.
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Because the original-issue high-yield market is in its infancy until the mid-1980s, there are few

firms with ratings below Baa in the early years of the sample. This is especially true of Caa and

lower rated bonds, which remain a small portion of the bond market throughout the sample period.

To ensure that there are a sufficient number of firms available for estimating rating-specific default

loss betas, we exclude all firms with ratings above Aa or below B. In addition, there are a few

months in the 1970s when there are fewer than two high-yield firms in the sample, which prevents

reliable estimation of the model. These months are dropped from the sample altogether. Firms with

date for less than 12 months are excluded. This leaves us with 162,540 firm-month observations,

covering 1,469 public non-financial U.S. firms over the period January 1973 to September 2021.

The range of credit quality in our data may be judged from Table B.1, which categorizes firms

according to their median rating over the sample period. The table shows, for each letter rating,

the number of firms in our study with that median rating. As the table indicates, the firms in our

sample tend to be of medium to low credit quality. In the technology and utilities sectors, firms

are rated investment-grade more often than high-yield, whereas energy and media firms tend to be

rated high-yield. Capital and consumer industries account for over half of the sample. Summary

statistics for excess credit spreads per unit of expected losses, s jt/Et(L j,t+1)− 1, are reported in

Table B.2. As expected, credit spreads scaled by expected losses decrease as default risk increases,

consistent with the literature on the credit spread puzzle. That is, the excess spread over and

above expected losses is proportionately higher for investment-grade firms compared to high-yield

firms (Eom, Helwege, and Huang, 2004; Huang and Huang, 2012; Berndt, 2015; Berndt, Douglas,

Duffie, and Ferguson, 2018). Table B.3 presents additional descriptive statistics for the firms in

our sample. By industry, technology firms tend to be the largest and utilities the smallest. Credit

spreads tend to be higher for firms in the energy sector and lower, at the median, in consumer

industries, technology and transportation.11

Figure 6 plots average credit spreads by letter rating for our sample. As expected, spreads

11While the number of investment-grade utilities in our sample exceeds that of high-yield utilities (Table B.1), there
are more firm-month observations for riskier utilities. This explains the fairly high value in Table B.3 of median default
probabilities for the utilities sector.
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are highest for firms with the lowest credit rating. Credit spreads rise around recessions, before

reverting back to lower levels.

Figure 6: Credit spreads by letter rating
The figure shows the monthly times series of average five-year senior unsecured bond yield spreads by Moody’s letter
rating. The sample includes 1,469 public non-financial US firms over the period January 1973 to September 2021.

To estimate expected default losses betas we require data on actual defaults, which we obtain

from the Moody’s Default and Recovery Database. We also require data on recovery rates. We use

a recovery rate of 0.39, 0.46, 0.44, 0.42 and 0.37 for Aa, A, Baa, Ba and B rated firms, respectively,

to reflect the average recovery rates for senior unsecured bonds measured by trading prices reported

in Moody’s Investors Service (2022) as of 2.5 years prior to default, for the period 1983–2021.

3B. Estimation results

We estimate log(premt) as time fixed effects in a regression of the left-hand side in (38) on time and

cohort fixed effects. Panel A of Table 2 shows the results of this regression, including the coeffi-

cients on the cohort fixed effects for each of the rating categories (the omitted category is Baa). We

find that illiquidity mark-ups of bond risk premia, ` j, are significantly larger for investment-grade

firms than for high-yield firms.

We plot the time series of log(premt) in Figure 7. The market risk premium is higher in

recessions than other periods, with the highest value of log(premt) occurring in the GFC. Another
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Table 2: Risk premium identification

constant Aa A Ba B R-sqr RMSE Obs

Est −4.303** 1.322** 0.489** −1.091** −1.561** 0.959 0.256 2,793
SE (0.217) (0.015) (0.011) (0.014) (0.015)

This table reports the results for the panel-data regression (38) which identifies log(xt) as month fixed effects in a
regression of log([ĉs jt −Et(L j,t+1)]/K jt) on month and cohort fixed effects. The benchmark cohort is Baa, and the
benchmark month is September 2021. Robust standard errors are shown in parentheses. The sample covers 1,469
public non-financial US firms over January 1973 to September 2021.

spike occurs in the Covid recession, but the magnitude in that period is not very different from

the 1975 recession. The risk premium is lowest in boom periods, especially in the late 1970s, late

1990s, and mid 2000s. The lowest level occurs a few years before Covid, around the time the

Federal Reserve begins to raise off of the zero lower bound.

Figure 7: Market risk premium
The figure shows the monthly times of log(premt), from January 1975 to September 2021.

Figure B.1 compares our log(premt) measure to alternative risk premium proxies. It shows

that measured risk premia track the excess bond premium of Gilchrist and Zakrajšek (2012), the

Baa-Aaa spread, the Bekaert, Engstrom, and Xu (2021) risk aversion measure, and the VIX index

reasonably well.
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3C. Moment conditions

Our main focus is on a robust calibration of the relationship (3). While we cannot observe st di-

rectly, Equation (21) states that st is approximately equal to − log(premt), at least when the log

surplus consumptions ratio is close to its steady state s. So, we train the persistence parameter θ0 to

the measured autocorrelation of log(prem), and θ1 and θ2 to the correlation between log(premt+1)

and xt and the correlation between log(premt+1) and xt−1, respectively. By fitting the model to

match these three parameter estimates, we are able to generate estimates of the relationship be-

tween monetary policy shocks and output.

The corresponding empirical moment conditions are summarized in Table 3,along with the

other parameters used in the model. The table reports statistics for the period 1994.I–2019.I,

which matches the time period in Pflueger and Rinaldi (2022). The measured autocorrelation of

log(prem) is 0.83, its correlation with the lagged log output gap is −0.13, and its correlation with

the twice lagged output gap is 0.02.

Figure B.2 shows the quarterly time series of these moments. For each month, the moments

are computed using data for the past 40 quarters. The autocorrelation of the log risk premium

remains fairly flat throughout the sample period, hovering around 0.8, until the Covid pandemic

when it drops to below 0.6. The correlation between the log risk premium and the lagged output

gap is consistently lower for the once-lagged output gap than for the twice-lagged output gap. It is

negative on average for the once-lagged output gap, and positive for the twice-lagged output gap.

Both types of correlation were highest between 1990–1995, and lowest in the lead-up to the Covid

pandemic.
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Table 3: Parameters

Panel A: Calibrated parameters Value Source and empirical target

Preferences
Consumption growth g 1.89 Avg consumption growth

Campbell and Cochrane (1999)
Utility curvature γ 2 Equity Sharpe ratio

Campbell and Cochrane (1999)
Steady-state risk-free rate r 0.94 Avg real risk-free rate

Campbell and Cochrane (1999)
Monetary policy
MP coeff output γx 1.5 Reduced-form regression Taylor (1993)
MP coeff inflation γπ 0.5 Reduced-form regression Taylor (1993)
MP persistence ρi 0.80 Reduced-form regression

Clarida, Gali, and Gertler (2000)
Inflation
PC backward coeff ρπ 0.80 Qtrly inflation persistence Fuhrer (1997)
PC slope κ 0.0062 Regional inflation-unemployment slope

Hazell et al. (2022)
Consumption
Consumption–output gap link φ 0.93 Corr(output gap, detrended consump.)

Campbell, Pflueger, and Viceira (2020)

Panel B: Estimated parameters Empirical target

SD quarterly MP shock (%) σMP SD annual cons. growth σc = 1.5%
SD real rate (%) Θ SD annual real rate σr = 1.35%
Persistence surplus consumption θ0 Corr(log(premt+1), log(premt)) = 0.831
Preference-lagged output gap links θ1 Corr(log(premt+1),xt) =−0.126

θ2 Corr(log(premt+1),xt−1) = 0.016

Panel A reports model parameter values, the articles that the parameter values are drawn from, and the moment in the
data that the literature has targeted with this parameter. Consumption growth and the steady-state risk-free rate are
in annualized percent. The monetary policy coefficient and the Phillips curve slope are in units corresponding to the
empirical variables: the log output gap is in percent and the Fed Funds rate and inflation are in annualized percent.
Panel B reports moments for the time series of log risk premia displayed in Figure 7. The third column in Panel B
describes the moment that is matched by our calibration. The persistence of surplus consumption is annualized. The
sample period for computing log(prem) moments is 1994.I–2019.I, to match the time period in Pflueger and Rinaldi
(2022).

4. Preference Dynamics and Macroeconomic Fundamentals

This section calibrates the model in Section 1 to the moments in Table 3. The vector of parameters

to be fitted is

Θ = (σMP,θ0,θ1,θ2) (39)
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or, equivalently, (σMP,θ0,θ1,α).12 For each (θ1,α), we choose σMP and θ0 to match the model-

implied annualized consumption volatility to its target value of 1.5% and the autocorrelation of the

log market risk premium to its target value of 0.83.

4A. Model-implied moments

We follow Campbell, Pflueger, and Viceira (2020) and simulate a draw of length T = 10,000,

discarding the first 100 simulation periods to ensure that the system has reached the stochastic

steady-state. Model moments are computed by averaging across two independent simulations.

4B. Fitted parameters

Figure 8 shows the fitted values for σMP and θ0, for various combinations of θ1 and α . The left

side of the figure shows that the volatility of monetary policy (and therefore of consumption) is

quite sensitive to the choice of α despite the fact that all of the plotted lines have a value of α

that is close to one. On the right side, the choice of α has a larger impact as the value of θ1 falls

below −0.5 and is quite noticeable below −1. In contrast, as θ1 approaches zero the sum of the

backward-looking and forward-looking parameters becomes irrelevant, as the model collapses to

that of Campbell and Cochrane (1999).

Figure 9 visualizes the corresponding model-implied moments for the preference-output gap

links, together with their empirical counterparts. The left panel of the figure shows that there are

parameter vectors (σMP,θ0,θ1,α) that simultaneously match consumption volatility, the persis-

tence of the log risk premium, and the correlation between log risk premium and the lagged output

gap. The right panel of the figure reveals that these parameter combinations tend to underestimate

the correlation between log risk premium and the twice-lagged output gap, albeit only by a small

amount.

Figure 9 points to values for α slightly greater than one, and to θ1 values below minus one. To

more formally choose among (θ1,α) pairs, the left panel of Figure B.3 plots, for various values

12Recall that for a given θ1 and α , θ2 can be computed from (11).
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Figure 8: Fitted parameters σMP and θ0
The figure shows the fitted values for σMP and θ0, for various combinations of θ1 and α . For each (θ1,α), we
choose σMP and θ0 to match the model-implied annualized consumption volatility to its target value of 1.5% and the
autocorrelation of the log market risk premium to its target value of 0.83 (Table 3). Only θ1 values for which the
model-implied standard deviations of real rates is between ±1% of its empirical target of 1.35% are shown.

of α , the value for θ1 at which the model-implied and observed valued for corr(log(premt+1),xt)

match.13 The right panel shows the corresponding absolute fitting error for corr(log(premt+1),

log(premt−1)). The figure shows that this error is minimized at α = 1.025, and that the associated

best choice for θ1 is −1.186.

Panel A of Table 4 reports the estimated parameter estimates. For α = 1.025 and θ1 =−1.186,

the values for σMP and θ0 that match the model-implied annualized consumption volatility and

the autocorrelation of the log market risk premium to their empirical targets are σMP = 0.387 and

θ0 = 0.892. While the estimated persistence parameter θ0 is close to the 0.87 estimate of Campbell

and Cochrane (1999) that is used in many related studies, including Pflueger and Rinaldi (2022),

our estimate for the standard deviation of monetary policy shocks σMP is lower than that reported

in Pflueger and Rinaldi (2022). The difference in σMP estimates results from the restriction im-

posed by Pflueger and Rinaldi (2022) that the forward- and backward-looking terms in the Euler

13Recall that for each (θ1,α), we choose σMP and θ0 to match the model-implied annualized consumption volatility
to its target value of 1.5% and the autocorrelation of the log market risk premium to its target value of 0.83 (Table 3).
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Figure 9: Model-implied versus empirical moments
The figure shows model-implied moments for log risk premia, for various values of α = fx +ρx. For each (θ1,α), we
choose σMP and θ0 to match the model-implied annualized consumption volatility to its target value of 1.5% and the
autocorrelation of the log market risk premium to its target value of 0.83 (Table 3). Only θ1 values for which the model-
implied standard deviations of real rates is between ±1% of its empirical target of 1.35% are shown. In the left panel,
the black solid line correspond to the empirical target for Corr(log(premt+1), log(premt)) reported in Table 3 for the pe-
riod 1994.I–2019.I, and in the right panel it corresponds to the empirical target for Corr(log(premt+1), log(premt−1)).

equation (10) add up to one, which places a constraint on consumption volatility at a given level

of interest rate uncertainty. Figure 9 shows, however, that the restriction on the Euler equation

does not draw much empirical support. We therefore allow the sum of the forward- and backward-

looking terms in (10) to differ from one. This enables the model to match to the target correlation

between surplus consumption and the output gap. At the same time, it implies a higher consump-

tion volatility for a given level of interest rate volatility, meaning that target consumption volatility

is matched at a lower value for σMP.

The calibrated preference parameters imply an annualized discount factor of 0.979 and an Euler

equation with roughly equal-sized forward- and backward-looking coefficients ( fx = 0.552,ρx =

0.473). The sum of these two coefficients is 1.025, so slightly larger than in Pflueger and Rinaldi

(2022) (α = 1) but smaller than in Campbell, Pflueger, and Viceira (2020) (α = 1.04). The co-

efficient on the real interest rate in the Euler equation is 0.236, which is in line with the estimate

in Yogo (2004) of 0.2.

The model implies that the trough output response occurs 9–10 quarters after the initial mone-

tary policy shock, and measures around 2.2% for every 100 basis point increase in the Fed funds
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Table 4: Estimated and implied parameters

Value

Panel A: Estimated parameters
Std. Quarterly MP Shock (%) σMP 0.387
Surplus Consumption - Persistence θ0 0.892
Surplus Consumption - Output Gap θ1 −1.186
Sum of forward- and backward looking terms in Euler equation α 1.025

Panel B: Implied parameters
Discount factor β 0.979
Steady-state surplus consumption ratio S 0.014
Maximum surplus consumption ratio Smax 0.023
Euler equation forward coefficient fx 0.473
Euler equation backward coefficient ρx 0.552
Euler equation real rate slope ψ 0.236
Surplus consumption–Lagged output gap θ2 1.169

Panel C: Implied macroeconomic dynamics
SD annual consumption growth σc 1.5
SD annual change Fed Funds rate σr 1.0
Trough effect consumption (%) −2.2
Lag trough (quarters) 9–10
Trough effect output gap (%) −1.6
Lag trough (quarters) 7

This table reports the results for the parameter calibration.

rate. These estimates fall within those of Christiano, Eichenbaum, and Evans (1999) who report a

reduction in output by 70 basis points at eight quarters and Romer and Romer (2004) who report

a reduction by 4.3% at eight quarters, except that our trough lag estimate is slightly longer than

theirs.

The top panel of Figure 10 depicts the transmission of a monetary policy shock. A positive

shock leads to an increase in the short-term risk-free rate that mean-reverts and converges back

to zero at about five quarters.The output gap initially declines and reaches a trough response of

around −1.6 percentage points around nine to ten quarters, before converging back to its steady-

state value. Inflation responds more slowly than the output gap and shows a moderate negative

response.

The bottom panel of Figure 10 reproduces the corresponding results of Pflueger and Rinaldi

(2022). Relative to their approach, our calibration of the relationship between preferences and the
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Panel B: fx +ρx = 1
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Figure 10: Model-implied impulse responses to monetary policy shock
The figure shows the model-implied impulse responses to a 100 basis point monetary policy shock. The left panel
shows the response of the federal funds rate in annualized percent, the middle panel shows the response of the output
gap in percent, and the right panel shows the response of inflation in annualized percent. The figures shows results for
our model fit (Panel A), and under the restriction α = 1 (Panel B).

output gap in (3) implies a more pronounced and longer-lasting hump in the response of output to

monetary policy shocks.

5. Concluding Remarks

We present empirical evidence on the relationship between surplus consumption and the lagged

output gap using a novel method of extracting a measure of the market risk premium from corporate

bond prices. Our risk premium measure is closely related to the risk sensitivity variable in habit-
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formation utility models based on Campbell and Cochrane (1999), which allows us to estimate the

correlation with the output gap in a macroeconomic model.

Our evidence is particularly relevant for testing the assumptions in recent macroeconomic mod-

els that relate FOMC policy to the output gap. For example, the framework in Campbell, Pflueger,

and Viceira (2020) assumes that surplus consumption is a function of the lagged output gap and the

twice-lagged output gap, as well as of its own lag. Such an assumption has the appealing quality of

inducing a hump shape in the impulse response function of output to a monetary policy shock. We

provide empirical evidence that the lagged output gap enters the surplus consumption equation,

validating the assumption in these recent models.

While our results provide support for this type of preference specification, we note that the

forward and backward looking weights in the Euler equation must be flexible if the moments of

the log risk premium are to be matched. We find that setting the sum of the weights to one leads to

a worse fit of the model compared to a sum that is slightly higher (1.025 in our estimation).

Having calibrated the model to the risk premium moments, we are able to use the estimates

of the lagged output gap coefficients to generate impulse response functions. We find that the

calibration estimates are consistent with a dynamic macroeconomic model where a 100 basis point

Fed funds shock leads to a drop in output of 2.2%. The impulse response function associated with

this set of parameters has the desired hump shape with a trough at nine to ten quarters. This places

our estimates of the impact of monetary policy in output between those of Christiano, Eichenbaum,

and Evans (1999) and Romer and Romer (2004).
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APPENDIX

A. Model Derivations and Macroeconomic Dynamics

This appendix provides detailed derivations for the results in Section 1.

A.1. Euler equation

Substituting (2), (3) and (4) into (8), and simplifying, gives

rt = − log[Et(exp(−γ (∆ct+1 +∆st+1)))] (A.1)

= − log(exp(−γ Et(∆ct+1 +∆st+1)+
1
2

γ
2(1+λt−1)

2
σ

2
c )) (A.2)

= γ Et(∆ct+1)+ γ Et(∆st+1)−
1
2

γ
2(1+λt)

2
σ

2
c (A.3)

= γ Et(∆ct+1)− γ(1−θ0)(st− st)+ γθ1xt + γθ2xt−1 (A.4)

+γθ3Et(xt+1)−
1
2

γ
2(1+λ (st))

2
σ

2
c (A.5)

= γ Et(∆ct+1)+ γθ1xt + γθ2xt−1 + γθ3Et(xt+1). (A.6)

The last equation holds because the sensitivity function λ (st) has just the right form so that st drops

out.

Substituting (6) into (A.6), and rearranging, yields

rt = γ Et(xt+1)− γφxt + γθ1xt + γθ2xt−1 + γθ3Et(xt+1) (A.7)

rt = γ Et(xt+1)− γ(φ −θ1)xt + γθ2xt−1 + γθ3Et(xt+1) (A.8)

γ(φ −θ1)xt = γ(1+θ3)Et(xt+1)+ γθ2xt−1− rt (A.9)

xt =
1+θ3

φ −θ1
Et(xt+1)+

θ2

φ −θ1
xt−1−

1
γ(φ −θ1)

rt . (A.10)
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A.2. Macroeconomic dynamics

The macroeconomic dynamics are described by (10), (12) and (13). They can be expressed as

0 = F Et(Yt+1)+GYt +HYt−1 +Mεt , (A.11)

where F =


fx ψ 0

0 fπ 0

0 0 0

, G =


−1 0 −ψ

κ −1 0

(1−ρi)ψx (1−ρi)ψπ −1

, H =


ρx 0 0

0 ρπ 0

0 0 ρi

, and M =


0

0

1

 .

A.3. Derivation of premY+VY ,t = βY,t premt

The tower property of conditional expectations gives

VY,t =
∞

∑
j=1

Et(exp(
j

∑
s=1

∆mt+s)Yt+ j), (A.12)

= Et(exp(∆mt+1))Et(Yt+1 +VY,t+1)
Et(exp(∆mt+1)(Yt+1 +VY,t+1))

Et(exp(∆mt+1))Et(Yt+1 +VY,t+1)
(A.13)

= Et(exp(∆mt+1))Et(Yt+1 +VY,t+1)

(
1+Covt

(
exp(∆mt+1)

Et(exp(∆mt+1))
,

Yt+1 +VY,t+1

Et(Yt+1 +VY,t+1)

))
(A.14)

= Et(exp(∆mt+1))Et(Yt+1 +VY,t+1)(1−premY+VY ,t), (A.15)

where premY+VY ,t is defined as

premY+VY ,t = −Covt

(
exp(∆mt+1)

Et(exp(∆mt+1))
,

Yt+1 +VY,t+1

Et(Yt+1 +VY,t+1)

)
. (A.16)
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Let RY,t+1 =
Yt+1+VY,t+1

VY,t
denote the one-period gross return on Y , and R f ,t = 1/Et(exp(∆mt+1)) is

the one-period gross return on the risk-free asset. Then,

Et(RY,t+1)−R f ,t =
Et(Yt+1 +VY,t+1)

VY,t
− 1

Et(exp(∆mt+1))
(A.17)

=
Et(exp(∆mt+1))Et(Yt+1 +VY,t+1)−VY,t

VY,t Et(exp(∆mt+1))
(A.18)

= −
Et(exp(∆mt+1))Et(Yt+1 +VY,t+1)Covt

(
exp(∆mt+1)

Et(exp(∆mt+1))
,

Yt+1+VY,t+1
Et(Yt+1+VY,t+1)

)
VY,t Et(exp(∆mt+1))

,(A.19)

and thus

Et(RY,t+1)−R f ,t

Et(RY,t+1)
= −Covt

(
exp(∆mt+1)

Et(exp(∆mt+1))
,

Yt+1 +VY,t+1

Et(Yt+1 +VY,t+1)

)
. (A.20)

Equating (A.16) and (A.20) yields

premY+VY ,t =
Et(RY,t+1)−R f ,t

Et(RY,t+1)
(A.21)

≈ 1− exp
(
−(log(Et(RY,t+1))− r f ,t)

)
(A.22)

≈ log(Et(RY,t+1))− r f ,t . (A.23)

Using (2), and the equilibrium outcome where ∆mt+1 is conditionally normally distributed with

mean Et(−γ (∆ct+1 +∆st+1)) and variance 1
2γ2(1+λ (st))

2σ2
c , we obtain

exp(∆mt+1)

Et(exp(∆mt+1))
=

exp(−γ (∆ct+1 +∆st+1))

Et(exp(−γ (∆ct+1 +∆st+1)))
(A.24)

= exp
(
−γ(1+λ (st))εc,t+1−

1
2

γ
2(1+λ (st))

2
σ

2
c

)
(A.25)

≈ 1− γ(1+λ (st))εc,t+1−
1
2

γ
2(1+λ (st))

2
σ

2
c . (A.26)
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Substituting (A.26) into (A.16) yields the approximate relationship

premY+VY ,t ≈
Covt

(
εc,t+1,

Yt+1+VY,t+1
Et(Yt+1+VY,t+1)

)
σ2

c︸ ︷︷ ︸
=βY,t

γ(1+λ (st))σ
2
c︸ ︷︷ ︸

=premt

. (A.27)

For cases where Yt+1 +VY,t+1 has a conditional log-normal distribution close to one, including the

one-period consumption claim where Yt+1 +VY,t+1 =Ct+1,

βY,t ≈
Covt

(
εc,t+1,εlog(Y+VY ),t+1

)
σ2

c
. (A.28)

Substituting (4) into (20), and considering cases where st is close to the steady state, we obtain

premt = γ
1
S

√
1−2(st− s)σ2

c (A.29)

log(premt) = constant+
1
2

log(1−2(st− s)) (A.30)

≈ constant+
1
2

log[exp(−2(st− s))] (A.31)

= constant− st . (A.32)

A.4. Corporate bond pricing

We aim to express the real bond price as Bit = Et(exp(∆mt+1))(1− sit). Since

Bit = Et(exp(∆mt+1)(1−Li,t+1)) (A.33)

= Et(exp(∆mt+1))Et(1−Li,t+1)
Et(exp(∆mt+1)(1−Li,t+1))

Et(exp(∆mt+1))Et(1−Li,t+1)
(A.34)

= Et(exp(∆mt+1))Et(1−Li,t+1)(1−prem1−L,it), (A.35)

we obtain

sit = Et(Li,t+1)+Et(1−Li,t+1)prem1−L,it . (A.36)
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Observed credit spreads in excess of expected may reflect compensation for illiquidity risk,

ŝit−Et(Li,t+1) = Et(1−Li,t+1)prem1−L,it `it , (A.37)

as modeled by `it . Applying the definitions (18) and (A.16), Equation (A.37) implies

ŝit−Et(Li,t+1)

Et(Li,t+1)
=

Et(1−Li,t+1)

Et(Li,t+1)
β1−L,it premt `it (A.38)

= −
Et(1−Li,t+1)

Et(Li,t+1)
Covt

(
exp(∆mt+1)

Et(exp(∆mt+1))
,

1−Li,t+1

Et(1−Li,t+1)

)
premt `it(A.39)

= Covt

(
exp(∆mt+1)

Et(exp(∆mt+1))
,

Li,t+1

Et(Li,t+1)

)
premt `it (A.40)

= −βL,it premt `it . (A.41)

37



B. Additional Tables and Figures

Table B.1: Distribution of firms across industries and by credit quality

Aa A Baa Ba B All

Capital Industries 5 63 102 85 120 375
Consumer Industries 12 49 83 60 89 293
Energy & Environment 4 21 57 45 88 215
Media & Publishing 2 13 25 16 25 81
Retail & Distribution 1 20 44 31 21 117
Technology 6 46 69 40 50 211
Transportation 1 2 16 7 10 36
Utilities 4 52 68 11 2 137
Other 1 0 2 1 0 4

All 36 266 466 296 405 1,469

The table reports the distribution of firms across industries and by median Moody’s senior unsecured issuer-level
rating. The sample includes 1,469 public non-financial US firms, over the period January 1973 to September 2021.

Table B.2: Credit risk premia across industries and by credit quality

Aaa Aa A Baa Ba B

Capital Industries 4.12 3.63 2.58 1.68 0.53 −0.56
Consumer Industries 3.29 2.95 2.28 1.48 0.35 −0.86
Energy & Environment 3.52 3.32 2.63 1.70 0.57 −0.44
Media & Publishing – 2.41 2.69 1.55 0.72 −0.62
Retail & Distribution 3.96 2.81 2.57 1.54 0.40 −0.45
Technology 3.80 2.94 2.39 1.69 0.52 −0.58
Transportation – 2.53 2.99 1.39 0.34 −0.48
Utilities 5.32 – 3.55 1.38 −0.03 −1.47

The table reports the median log credit risk premium, xit = log(Sit − PitLi)− log(PitLi), across industries and by
Moody’s senior unsecured issuer-level rating. The sample includes 1,276 public non-financial U.S. firms, over the
period August 1974 to September 2020.
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Table B.3: Firm characteristics by industry

Capital
Ind

Cons
Ind

Energy/
Envmt

Media/
Publ

Retail/
Distr

Tech Trans-
port

Utilities

Market capitalization 2,543 6,077 4,255 2,788 6,466 8,656 4,042 1,592
Total assets 4,228 6,213 7,433 4,272 7,914 9,700 9,470 2,654
Book value of debt 2,089 3,052 3,304 2,155 4,593 4,544 4,709 1,554
Market-to-book ratio 0.77 1.03 0.76 0.75 0.86 0.85 0.72 0.66
(Cash+ST invt)/assets 0.05 0.05 0.03 0.03 0.03 0.07 0.04 0.01
Return on assets 0.04 0.07 0.04 0.04 0.05 0.05 0.04 0.03
Operating margin 0.09 0.14 0.10 0.14 0.05 0.12 0.10 0.23
Dividends 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.02
Debt issuance 0.01 0.02 0.02 0.00 0.03 0.02 0.02 0.02
Equity issuance 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01
Interest coverage 0.00 0.00 3.96 0.00 0.00 0.00 0.00 3.05
Leverage 0.48 0.50 0.44 0.50 0.57 0.48 0.47 0.53
Trailg 12mo equity return 0.05 0.08 0.01 0.06 0.06 0.07 0.08 0.12
Trailg 12mo SSR 0.09 0.06 0.11 0.09 0.08 0.07 0.09 0.07
5yr credit spread 179 120 203 179 139 125 130 167
10yr credit spread 150 112 163 154 127 120 110 189
5yr PD 42 29 56 43 37 26 37 112
10yr PD 52 29 66 56 39 26 39 146
Years in sample 8 7 5 5 6 5 7 3

The table reports median firm characteristics by industry. Market capitalization, total assets and book value of debt
are reported in millions of U.S. dollars. Book debt is computed as the sum of short-term debt and long-term debt. The
return on assets is calculated as net income scaled by assets. Operating margin is computed as operating income scaled
by sales. Dividends are annual cash dividends scaled by total assets. Debt issuance is the annual change in book debt
scaled by lagged assets. Equity issuance is the annual growth of balance sheet equity, net of retained earnings, scaled
by lagged assets. Interest coverage is EBITDA divided by annual interest expense. Leverage is book debt divided by
total assets. The trailing equity returns and trailing sum of squared equity returns (SSR) are computed using daily data
for the past 12 months. Credit spreads and default probabilities (PDs) are annualized and reported in basis points. The
sample includes 1,276 public non-financial U.S. firms, over the period August 1974 to September 2020.
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Figure B.1: Risk premium measure and proxies
The figure shows the monthly times of log(premt), from January 1975 to September 2021. It also displays alternative
risk premium proxies, including the excess bond premium of Gilchrist and Zakrajšek (2012), the Baa-Aaa spread,
the Bekaert, Engstrom, and Xu (2021) risk aversion measure (qBEX ), and the VIX index.
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Figure B.2: Risk premium measure and proxies
The figure shows the trailing ten-year autocorrelation for the log risk premium (black solid line), correlation between
log risk premium and once-lagged output gap (blue dashed line), and between log risk premium and twice-lagged
output gap (red dashed line).
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Figure B.3: Model-implied link between preferences and lagged output gap
For various values of α , the left panel shows the value for θ1 at which the model-implied and observed valued for
corr(log(premt+1),xt) match as closely as possible. For each (θ1,α), we choose σMP and θ0 to match the model-
implied annualized consumption volatility to its target value of 1.5% and the autocorrelation of the log market risk
premium to its target value of 0.83 (Table 3). Only α values for which the model-implied standard deviations of real
rates is between ±1% of its empirical target of 1.35% are shown. The right panel shows the corresponding absolute
fitting errors for Corr(log(premt+1),xt) and Corr(log(premt+1),xt−1).
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